Reflect on your math questioning: ## Session Objectives ### ONE Reflect on your own questioning practices. ### **TWO** Analyze math question types and patterns. ### **THREE** Generate examples of high level math questions for your own classroom. EMPORIA STATE UNIVERSITY # Why is Purposeful Questioning Important? ### Scaffolding Provides an avenue for students to build their own understanding of math concepts. ### **Differentiation** Allows for support and extensions to meet students at all readiness levels and backgrounds. # Higher Level Thinking Provokes deeper understanding by asking students to explain, model, and solve in various ways. # Principles to Actions Eight Mathematics Teaching Practices - 1. Establish mathematics goals to focus learning. - 2. Implement tasks that promote reasoning and problem solving. - 3. Use and connect mathematical representations. - 4. Facilitate meaningful mathematical discourse. - 5. Pose purposeful questions. - 6. Build procedural fluency from conceptual understanding. - 7. Support productive struggle in learning mathematics. - 8. Elicit and use evidence of student thinking. # NCTM: Teacher and Student Questioning Actions | Pose | pur | oose | eful (| que | stions | |-------|------|-------|--------|------|--------| | Teach | er a | nd st | tude | nt a | ctions | | reaction and stade in actions | | | | | |--|---|--|--|--| | What are teachers doing? | What are students doing? | | | | | Advancing student understanding by asking questions that build on, but do not | Expecting to be asked to explain, clarify, and elaborate on their thinking. | | | | | take over or funnel, student thinking. Making certain to ask questions that go beyond gathering information to probing thinking and requiring explanation and | Thinking carefully about how to present
their responses to questions clearly, with-
out rushing to respond quickly.
Reflecting on and justifying their reason- | | | | | justification. Asking intentional questions that make the mathematics more visible and accessible for student examination and discussion. | ing, not simply providing answers. Listening to, commenting on, and questioning the contributions of their classmates. | | | | | Allowing sufficient wait time so that
more students can formulate and offer
responses. | | | | | | Question Type | Purpose | Examples | | | | |--|--|---|--|--|--| | Gathering information | These questions ask students to recall facts, definitions, or procedures. | How many pieces of fruit did the caterpillar eat on Friday? Can you show me how you counted the fruit? | | | | | Probing thinking | These questions ask students to explain, elaborate, or clarify their thinking, including articulating the steps in solution methods or completion of a task. | I see you wrote 10 + 5 on your paper. Where did the 10 come from? Tell me about your picture. I see you wrote the days of the week and then drew squares. | | | | | Making the mathematics visible | These questions ask students to discuss mathematical structures and make connections among mathematical ideas and relationships. | Marisa wrote 1 + 2 + 3 + 4 + 5 = 15. Is that okay to write an equation with all those plus signs? What pattern do you see in the equations 10 + 2 = 12, 10 + 3 = 13, 10 + 4 = 14, and 10 + 5 = 15? | | | | | Encouraging reflection and justification | These questions reveal deeper insight into student reasoning and actions, including asking students to argue for the validity of their work. | I see you put a circle around the 1, 4, and 5. Why did you put these pieces of fruit together? What makes 10 + 5 equal to 9 + 6? | | | | | Engaging with the reasoning of others | These questions help students gain understanding of each other's solution paths and thinking, and lead to the co-construction of mathematical ideas. | Who understands Shyanne's explanation and can say it back in your own words? Can you add on to what Nate said? Do you agree or disagree with Anne? Why? | | | | ### Generate Questions for Math Tasks Select a math task below. Can you generate types of questions using the NCTM model? Use the color coded sticky notes. ### Task 1: K-1 - 1. Use the words "plus" and "minus" to say what you see on the five frame. - 2. What if you made another dot blue? What new math sentences can you say? #### Task 2: 2-3 - 1. Use a number line to show 43-27=?. Explain how you know your answer is correct. - 2. Explain how to find the correct answer to 43-29=? by starting with 43-30. ### Task 3: 4-5 - 1. Draw a rectangle and shade about % of the rectangle. - 2. Name three other fractions that are close in size to 5/8. Explain your reasoning. ### **Questioning Matrix** ## **Questioning Matrix** | What
Is? | When Is? | Where
Is? | Which
Is? | Who
Is? | Why
Is? | How
Is? | | |----------------|----------------|-----------------|-----------------|---------------|---------------|---------------|--| | What
Did? | When Did? | Where
Did? | Which Did? | Who
Did? | Why
Did? | How
Did? | | | What
Can? | When
Can? | Where
Can? | Which
Can? | Who
Can? | Why
Can? | How
Can? | | | What
Would? | When
Would? | Where
Would? | Which Would? | Who
Would? | Why
Would? | How
Would? | | | What
Will? | When
Will? | Where
Will? | Which
Will? | Who
Will? | Why
Will? | How
Will? | | | What
Might? | When
Might? | Where
Might? | Which
Might? | Who
Might? | Why
Might? | How
Might? | | | | | | | | | | | Set a goal for your math questioning: ## Questions? Emily Cline Kansas City ecline1@emporia.edu Meghan Shave Wichita mshave@emporia.edu Brandy Crowley *Emporia* bcrowley@emporia.edu Instagram @TXMathEducator Amanda Neff *Emporia* aneff@emporia.edu EMPORIA STATE UNIVERSITY # EMPORIA STATE UNIVERSITY