

OGAP Additive Framework

Depending upon the strength of additive reasoning, students may move up and down between additive, transitional, counting, and non-additive reasoning and strategies as they interact with new topics or new concepts.

Problem Contexts

Counting

Quantities Patterns

Additive Situations

Add to Take from

Put together/Take apart

Compare

Concepts/Properties

Properties and Relationships Magnitude

Base 10/Place Value

Concepts Strategies

Problem Structures

Types of Items

Contextual Non-contextual

Complexity of Addends

Single digit

Multiple digit

Multiples of 10, 100, 1000

Representations

Number Paths Number Lines Base 10

Ten Frames
Dot images

<u>Properties and Relationships</u> Relationship between addition

and subtraction

Commutative property
Associative property

Identity

Relationships between models, equations and contexts

Compensation
Constant difference

<u>Addends</u>

Two addends

Three or more addends Compositions of 10

Relationship between addends

Meanings for Subtraction

Difference Removal Distance

Missing addend

Number of steps

Single step Multi-step

	Result Unknown	Change Unknown	Start Unknown
Add To	Two bunnies sat on the grass. Three more bunnies hopped there. How many bunnies are on the grass now? 2 + 3 = ?	Two bunnies were sitting on the grass. Some more bunnies hopped there. Then there were five bunnies. How many bunnies hopped over to the first two? 2 + ? = 5	Some bunnies were sitting on the grass. Three more bunnies hopped there. Then there were five bunnies. How many bunnies were on the grass before? ? + 3 = 5
Take From	Five apples were on the table. I ate two apples. How many apples are on the table now? 5 - 2 = ?	Five apples were on the table. I ate some apples. Then there were three apples. How many apples did I eat? 5 - ? = 3	Some apples were on the table. I ate two apples. Then there were three apples. How many apples were on the table before? ? - 2 = 3
	Total Unknown	Both Addends Unknown	Addend Unknown
Put Together/ Take Apart	Three red apples and two green apples are on the table. How many apples are on the table?	Grandma has five flowers. How many can she put in her red vase and how many in her blue vase?	Five apples are on the table. Three are red and the rest are green. How many apples are green?
	3 + 2 = ?	5 = 0 + 5 5 = 5 + 0 5 = 1 + 4 5 = 4 + 1 5 = 2 + 3 5 = 3 + 2	3+?=5 5-3=?
	Difference Unknown	Bigger Unknown	Smaller Unknown
Compare	("How many more?" version): Lucy has two apples. Julie has five apples. How many more apples does Julie have than Lucy?	(Version with "more"): Julie has three more apples than Lucy. Lucy has two apples. How many apples does Julie have?	(Version with "fewer"): Lucy has three fewer apples than Julie. Julie has five apples. How many apples does Lucy have?
	("How many fewer?" version): Lucy has two apples. Julie has five apples. How many fewer apples does Lucy have than Julie?	(Version with "fewer"): Lucy has three fewer apples than Julie. Lucy has two apples. How many apples does Julie have?	(Version with "more"): Julie has three more apples than Lucy. Julie has five apples. How many apples does Lucy have?
	2+?=5 5-2=?	2+3=? 3+2=?	5-3=? ?+3=5

Additive Reasoning Progression – Addition

Additive Strategies

Traditional US algorithm

Transparent algorithms

Decomposes by place value and adds

$$18 + 27 = ?$$
 $18 = 10 + 8$
 $18 + 20 = 38$
 $27 = 20 + 7$
 $38 + 7 = 45$

30 + 15 = 45

Partial Sums

18
+27
30
+15
45

Uses properties

Associative Property 7+2+8=7+(2+8)

Commutative Property 6+7=7+6

Flexible compensation

Fact Fluency

Fact Recall 6+7=13

Derived Facts 6+6=12

6+7=13

Using 10s 6+7

6+4=10 and 10+3=13

Transitional Strategies

Efficient Use of a Model

Jumps by multiples of 10 on a number line

Inefficient decomposition to derive facts

6+7
"I know 5+5 is 10 and 3 more is 13"

Unitizes on a model

Subitizing, Unitizing, Commutativity, Number Composition, Place value understanding

Early Transitional Strategies

Adding inefficiently with or without a model

Combines or counts by 10s using base 10 representations

Counting Strategies

Mental counting strategies:

- Count on from first
- Count on from larger

Counting on with physical or visual model: 6+7

Early Counting Strategies

Direct modeling and counting from 1 with model (count 3 times)

Non-Additive Strategies

- Uses incorrect operation
- Models problem situation incorrectly
- Guesses

- Not enough information
- Uses procedures incorrectly

Underlying Issues/Errors

- Does not consider reasonableness of solution
- Error in counting, calculation, place value, property, equation, or model
- Units inconsistent or missing

Additive Reasoning Progression – Subtraction

Additive Strategies

Traditional US algorithm

Transparent algorithms

Decomposes by place value and subtracts

$$73 - 38 = ?$$
 $73 = 70 + 3$
 $38 = 30 + 8$
 $40 - 5 = 35$
 $73 - 30 = 43$
 $43 - 3 = 40$
 $40 - 5 = 35$

Adding Up Efficiently 38 + 2 = 40

$$40 + 33 = 73$$

 $2 + 33 = 35$

Constant Difference: 73 – 38

Partial Difference:

40 - 5 = 35

73 <u>- 38</u> Fact Recall

Fact Fluency

Derived Facts

Inverse relationship between addition and subtraction "7 - 2 is 5 because 5 + 2 is 7"

"
$$13 - 3 = 10$$
 and $10 - 5 = 15$ "

Transitional Strategies -

Making efficient jumps by multiples of 10, 100, ...

73 - 38 = 35

Distance on number line

73 - 38 = 35

Jump back on number line

13 – 8

Early Transitional Strategies

Subtracting inefficiently with or without a model

Using Base 10 representations

The strategies students use move back and forth across the levels as they learn new concepts and/or interact with new problem structures and contexts.

ace Value

回

Jumps by tens on number line

Adding up by tens 73-38=? 38+2=40

40+10=50 50+10=60 60+10=70

70+3=73 2+10+10+10+3=35

Subitizing, Unitizing, Commutativity, Number Composition, Base 10 understanding

Unitizes on a model

then 5 less is 5"

Counting Strategies

73 - 38 = 35

Counting back (7 – 5) "7...6,5,4,3,2"
Counting up "5...6,7"

Counting back (7 – 5) "7...6,5...that's 2"

Early Counting Strategies

Direct modeling-separating from, separating to, or matching with model (counts 3 times)

Non-Additive Strategies

- Uses incorrect operation
- Models problem situation incorrectly
- Guesses

- Not enough information
- Uses procedures incorrectly

Underlying Issues/Errors

- Does not consider reasonableness of solution
- Error in counting, calculation, place value, property, equation, or model
- Units inconsistent or missing

Base Ten Number Progression

QUANTITY: How Many?

RELATIVE MAGNITUDE: How Big? How Close?

Application of Base Ten

Flexible use of Base Ten understanding to solve problems

• Multiplicative understanding of place value

 $235 = (2 \times 100) + (3 \times 10) + (5 \times 1)$ Use of Pace Tan for flexible and efficient see

- Use of Base Ten for flexible and efficient computational strategies
- Extension of Base Ten understanding to decimal and negative numbers

Number Composition by Place Value Parts

Uses place value and number relationships to compare and consider relative magnitude

$$200 + 30 + 5 = 235$$

 $200 = 20 \text{ tens}$
 $30 = 3 \text{ tens}$

"63>59 because 6 tens is more than 5 tens"

23 tens and 5 ones

Unitizing with Composite Units

Unitizes to locate and compare numbers

"63 is 4 more than 59"

Representations, Conservation, Base Ten Understanding

Subitizing, Mental

Early Unitizing (Sees quantities in groups when ones are visible) = Composes and decomposes quantities in groups

"5 and 3 is 8"
"2 less than 10 is 8"
"3 and 3 is 6 and 2 more is 8"

"10, 20, 30, 31, 32"

"5 is 2 more than 3"

Early Counting (Treats quantities as collections of ones)

"1,2,3,4,5,6,7,8"

Counts by ones to locate and compare numbers

One more/less than a number

Where does 19 go on the number line?

Counts with one-to-one correspondence

Precounting _____

0

Counts with some correspondence

0

"three" "four"

0

Rote counting

Perceptual comparing

Not Counting or Comparing

- Guesses
- Not enough info
- Misinterprets problem situation or task

Underlying Issues/Errors

- Doesn't consider reasonableness of solution
- Sequence error
- Errors in units
- Numeral reversal

- Digit reversal
- Counting Error
- Model error
- Equation error

