Bad Word: "FOIL" Activity

How do the area diagrams in these tasks support student learning?

6th grade – Source Illustrative Mathematics

Student Task Statement

1. You can use area diagrams to represent products of decimals. Here is an area diagram that represents $(2.4) \cdot (1.3)$.

- a. Find the region that represents (0.4) • (0.3).
 Label it with its area of 0.12.
- b. Label the other regions with their areas.
- c. Find the value of $(2.4) \cdot (1.3)$. Show your reasoning.

7th grade – Source: Illustrative Mathematics

Student Task Statement

1. Write two expressions for the area of the big rectangle.

	8 <i>y</i>	X	12
$\frac{1}{2}$			

2. Use the distributive property to write an expression that is equivalent to $\frac{1}{2}(8y + -x + -12)$. The boxes can help you organize your work.

Algebra 1 - Source: Illustrative Mathematics

Student Task Statement

1. Here is a diagram of a rectangle with side lengths x + 1 and x + 3. Use this diagram to show that (x + 1)(x + 3) and $x^2 + 4x + 3$ are equivalent expressions.

2. Draw diagrams to help you write an equivalent expression for each of the following:

a.
$$(x + 5)^2$$

b.
$$2x(x + 4)$$

c.
$$(2x + 1)(x + 3)$$

$$d. (x+m)(x+n)$$

3. Write an equivalent expression for each expression without drawing a diagram:

a.
$$(x + 2)(x + 6)$$

b.
$$(x + 5)(2x + 10)$$

Algebra 2 - Source: Illustrative Mathematics

1. Diego used the long division shown here to figure out that $6x^2 - 7x - 5 = (2x + 1)(3x - 5)$. Show what it would look like if he had used a diagram.

$$3x - 5
2x + 1)6x^{2} - 7x - 5
-6x^{2} - 3x
-10x - 5
10x + 5
0$$

Pause here for a whole-class discussion.

- 2. (x-2) is a factor of $2x^3-7x^2+x+10$, $2x^2$ which means there is some other factor A where $2x^3-7x^2+x+10=(x-2)(A)$. Finish the division started here to find the value of A. $\frac{-2x^3+4x^2}{2x^3+4x^2}$
- 3. Jada used the diagram shown here to figure out that $2x^3 + 13x^2 + 16x + 5 = (2x + 1)(x^2 + 6x + 5)$. Show what it would look like if she had used long division.

	x^2	6 <i>x</i>	5
2 <i>x</i>	$2x^3$	$12x^{2}$	10x
1	x^2	6 <i>x</i>	5

$$2x + 1)2x^3 + 13x^2 + 16x + 5$$

Bad Word "Cancel" Activity

Complete the mathematical work, then name the operation used to rewrite the expression

Simplify	le operation asea to rewrite the expression
$\frac{8y^2(y-2)}{2y(y+1)(y-2)}$	
2y(y+1)(y-2)	
Solve	
2x+y=15	
3x-y=5	
·	
Solve	
$\sqrt{x+2}=5$	
Solve	
2x + 6 = 18	
Solve	
$\frac{x}{3} = 6$	
3	
Simplify	
$4x^2 + 6x - 6x + 24$	
Simplify	
<u>8x</u>	
$\overline{12x^3y}$	
Solve	
π	
$\sin x = \frac{\pi}{2}$	
2	

Bad word "Cross Multiply" Activity

Task A: Proportions as equivalent Fractions

Find x, by thinking of finding equivalent fractions.

$$\frac{x}{7} = \frac{15}{21}$$

Task B: Proportions as solving equations

Find x by solving the equation by using inverse operations.

$$\frac{x}{7} = \frac{15}{21}$$

Bad Phrase "Mov	ve the Decimal" Activity
Task 1: Rewrite 3	3.45×10^{-4} in standard form.
	(multiplying/dividing) by a power of ten, then digits move to the places because their place value has (increased/decreased) by a
Task 2: Rewrite 0	0.000456 in scientific notation.

- Question 1 How much did the place value change by?
- Question 2 Does the *a* value need to be bigger or smaller in standard form?